
Journal of Engineering Physics and Thermophysics, Vol. 72, No..5, 1999 

A P P R O X I M A T E  M E T H O D  F O R  C A L C U L A T I N G  

T U R B U L E N T  T W O - P H A S E  F L O W  I N  A C H A N N E L  

W I T H  P E R M E A B L E  W A L L S  

K. N. Volkov and V. N. Emel'yanov UDC 532.529 

Based on a model  of  a double-velocity and two-temperature medium the authors constructed a system of 

equations that describes plane or axisymmetric turbulent flow of a gas suspension in a channel with 

permeable walls. The system of equations of motion and heat transfer reduces to a system of ordinary 

differential equations, whose integration is much less difficult than solution of the initial system. The authors 

obtained the distribution of the velocity and local characteristics of turbulence in the channel with injection 

with allowance for  the inverse effect of a condensed phase. 

Introduction. Internal  flows are usually realized in the region of high Reynolds numbers that correspond 

to a turbulent regime of flow characterized by dependence of the viscosity and the Prandtl number on local char- 

acteristics of the flow. As a result of experimental investigations of the characteristics of turbulent flows in channels 

with uniform injection [ 1, 2 ] it was shown that at a distance from the inlet to the channel a quasistabilized regime 

of flow is established when the parameters of the flow normalized to the local velocity depend weakly on the axial 

coordinate. This was confirmed subsequently by other experiments [8 ] and calculations based on two-parameter 

turbulence models [4, 5 ]. 

In evaluating a number of flow characteristics, two-parameter turbulence models yield results that are in 

better agreement with the data of physical experiment than classical semiempirical models, for example, the Prandtl 

model or its later modifications that allow for the effect of a transverse mass flux on the mechanisms of turbulent 

transfer [6 ]. In [4], the phenomenon of laminarization of a turbulent flow in a channel with injection found 

experimentally in [1, 3 ] was reproduced theoretically based on a k - e  turbulence model. 

At the same time, simpler models whose construction involves a rational simplification of the initial system 

of equations, such as [2, 5 ], are also being developed. In particular, in 15 ], the distributions of local characteristics 

of turbulence over the cross section of a channel are obtained in final form based on a preliminary evaluation of 

the order of smallness of different terms. 

In practice, the intensification of transfer properties of a medium is largely attributable to the presence of 

condensed-phase particles, which brings up the necessity of calculating the characteristics of two-phase flows in 

channels with permeable wails. 
Approaches intended for description of turbulent flows of a gas suspension have been investigated rather 

thoroughly [7, 8 ]. However, the creation of simplified models that allow for special features of the flows formed 

and the character of mass supply from the channel wails is required to reproduce the specific regimes of flows in 

channels with injection, to obtain direct numerical evaluations of the flow characteristics, and to work out 

recommendations that make the construction of models of three-dimensional flows easier. In the available works, 

either the motion of particles in a known gasdynamic field without allowance for their inverse effect is considered 

or the carrying flow is assumed to be laminar [9-111. 
1. Formulation of the Problem. Let us a consider quasideveloped flow in a lorig channel when the charac- 

teristics of the flow referred to the velocity on the axis of the channel vary slightly along its length. The condition 

of the existence of the quasideveloped flow can be written in the following form: 
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Fig. 1. Flow in a channel with permeable  walls. 
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u m d x  << 1 or --Urn << 1. 

In injection, this flow is always established in channels of sufficient length behind the region of the inlet section 

[11. 
We br ing  the axis x into coincidence with the plane or the axis of symmetry  of the channel  and guide the 

axis y perpendicular ly  to it (Fig. 1). The  cross dimension of the channel  rw is assumed to be constant  along the 

entire length while the injection rate Vw is assumed to be the same at all points on the permeable surface of the 

channel and to be directed normally to it . The  liquid is taken to be spreading symmetrically relative to the plane 

x = 0 .  

2. Basic  Equations.  A double-velocity and two-temperature model of interpenetrating continua is used for  

calculation of the  characteristics of two-phase flow. 

The  flow is assumed to be quasis ta t ionary and is descr ibed  within the framework of a model of an 

incompressible medium.  The  condensed phase is modeled by a cont inuum devoid of intrinsic stresses. The  particles 

are spheres of the  same diameter;  their  collisions are disregarded. In the model of the interaction of a particle with 

a carrying flow, allowance is made  only for the force of hydrodynamic  resistance. The, coefficient of the resis tance 

is calculated according to the Stokes law CD -- 24/Rep, where Rep = I vg - v p l d p / v  is the Reynolds  number  in the  

relative motion of the phases. 

The  averaged continuity,  momentum, and energy equations for the gas and dispersed phases accurate to 

the correlation moments  of the third order  have the form: 

0 (v~k) = 0; (1) 
Ox k 

t 

O(V~,i) l 0(19 ) 0 (vO(Vgi)] O(VgiV'gk) - Svt; 

(vg I~) Oxk = Ox k P----r Ox k ) - Oxl~ - SO; 

(2) 

(3) 

0 
Ox k (~p)  (Vpk) + ~'p V'pk)) = 0 ; (4) 

0 
@p> %~> + ~o'~ ,;#>) = OX k Ox k (-- ~Op) (V'pk V'pi ) -- (Vpk) ~O'p V'pi)) "4- pgSvi ; (5) 

co @p) % 9  + ~o'p ;p9) o <Op) o (6) 
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Summation over the recurrent  subscripts is assumed. 

T h e  inverse effect of the dispersed phrase due to the interphase velocity and  temperature  slip is descr ibed 

by the terms:  

m 
Sv, pp {Vgi) - (Vpi) pp c__& (19g} - (19p) 

�9 = p g  T v  ; S ~  = pg Cp 7:~ " 

In system of Eqs. (1)-(6)  the terms that describe the release of dissipative heat due to the work of viscous 

forces a nd  the forces of in terphase  interaction and the terms that contain the pulsations of the t ransport  and  

pressure coefficients are omitted.  The  correlation moment of pulsations of the discrete-component  concentra t ion 

and velocity are  disregarded because of their  insignificant role in calculating the characterist ics of flows formed by 

injection [6 ]. 

For  representat ion of the components  of the turbulent-stress tensor, we adopt  the generalized Kolmogorov- 

Boussinesq hypothesis and the concept of turbulent viscosity, to calculate which the Ko lmogorov-Prand t l  formula 

v t = c t~k2 /e  is used. The differential  transpor~ equations of the second moments  of pulsations of the velocity of the 

carrying turbulent  flow are replaced by the algebraic expressions 

" OX] OX i OXk t3ij) (vg i v~)  = - ~,, ~ + - -~ g ~'~o �9 

Instead of the transport equat ion of the correlation moments of gas velocity and t empera tu re  pulsations, to calculate 

the tu rbu len t  heat flux, we use an expression written in the form of the Fourier  law: 

, v t o ( 0 8 )  

(Vgi/9'g) ----- p r  t OXi ,  

in which the  turbulent Prandt l  number  is assumed to be constant.  

T h e  relations for the kinetic turbulence energy and its dssipation rate  

(Vg~) Ox k Ox~ v + + P - e S k , (7) 

(Vgk} OX k Ox k v + -~e + c~1 k P - ce2 --k - S , : .  (8) 

are used in addition to the system of Eqs. (1)-(6).  The term P in Eqs. (7)-(8) describes the generation of turbulence.  

Near  the wall, account is taken of the coefficients of the model of turbulent t ransfe r  q,,  c~.1, and c~2 as functions 

of the turbulen t  Reynolds number  Ret = k 2 / v e .  The wall functions are calculated by the formulas of [5]. T h e  

curvature  of the streamlines is allowed for by the introduction of functions dependen t  on the turbulent  Richardson 

number  [7 ]. 

T h e  use of a low-Reynolds version of the two-parameter  k - e  model of turbulence for calculating pulsation 

character is t ics  enables us to allow for the curvature of the streamlines and the effects of laminarization of the 

turbulent  flow under the action of injected gas that are characteristic of flows in the channels  with permeable walls. 

T h e  equations of the model of turbulence as compared to single-phase flow contain additional terms that  

allow for the inverse effect of particles [7, 8 1: 

Pgrv  PgTv Ox~ [ " 
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To model the motion of hydrodynamical ly  fine particles, we restr ic t  ourselves to the construction of a locally 

homogeneous approximat ion  to the method of space-time averaging [8]. Disregarding, for fine particles, the 

convective and diffusion terms in the equations of transport  of the second single point moments of condensed-phase  

velocity pulsations [7 ], we obtain the following relations 

(Vpi Vpj) ----- fvv(Pgi Vg/.) ", (V'piO'p) = TvfvtgTv + + ToTOfOv (Vg i O'g) . (9) 

for the correlation moments  of the gas and dispersed phases. The exactness  of the given formulas increases as the 

characteristic times of re laxat ion of a particle decreases. In view of (9) we have: 

s ~ = 2 P - ~ - k ( 1 - f v v )  �9 s,  = 2ff-z-~ (1 - L )  
Pg~v ' Pg~v " 

The coefficients of ent ra inment  of a particle in the pulsation motion of the carrying turbulent  flow fvv, fro, 
and for are calculated by  the formulas of [7 ] using an exponential approximat ion of the double- t ime correlation 

functions of turbulent  pulsations of the velocity and temperature of the carrying flow along the t ra jectory of particle 

motion. The propert ies of the correlation function of the velocity and  the temperature  are taken to be the same 

[12 ]. The  coefficient f is calculated based on the recommendations of [7, 8 ]. The  difference between the scales of 

turbulent  velocity pulsations in the coordinate directions is allowed for  by the theory of locally homogeneous  and 

locally isotropic turbulence [ 1 2 ]. 

3. Bounda ry  Condit ions.  The  predominant  direction of flow development  enables us to exclude the 

momentum equation in the projection onto the y axis from consideration and to ignore the pressure variation along 

the transverse coordinate.  In the flow formed by  injection, the t ransverse  component  of the velocity vector is much 

s ma l l e r  in magni tude than  the longitudinal velocity component and  makes no perceptible contr ibut ion to the 

pressure distribution [6 1. The  indicated facts make it possible to use a parabolized formulation of the problem that 

does not require s ta tement  of the boundary conditions upstream. 

The solution of Eqs. (1)-(6) must satisfy the boundary condi t ions on the wall and the axis of symmetry  

of the channel. On the channel  axis, for y -- 0, we prescribe the condit ions of flow symmetry 

Ou~ = Otg~ Ok Oe 
Vg= Oy Oy = 0--}-- Oy- -  O. 

On a permeable  wall, when y = rw, conditions of normal injection are set for the components  of the vector 

of gas velocity (Ug = 0, vg = -Vw) while conditions that allow for the initial velocity nonequilibrium of the flow (Up 

= 0, Vp = -~OVw; ~o <__ 1) are set for the dispersed phase. The wall t empera tu re  (~g = 0p -- ~9 w) is prescribed as a 

thermal  boundary condition.  The  condition of the absence of velocity pulsations on the permeable surface of the 

channel  is taken for the turbulence characteristic [6 ], so that k = e = 0. 

4. Trans format ion  of  the Equations.  System of Eqs. ( I ) - (6)  allows an order  reduction. Let us assume that 

the distributions of the characteristics of the flow in different cross sections of the channel differ  only in length 

and velocity scales: 

u s = u m(x)  Ug(y ) ;  Vg = - VwVg(y);  19g = O w T g ( y ) ;  

Up = u re(x) Up(y ) ;  Vp = - VwV p(y)  ; Op =79wT p(3;); 

2 3 
k =  ttm (x) K (y) ; e = u m (x) E ( y ) / r  w.  

Here  u m is the velocity on the channel axis. The  half-width of the channe l  and the injection-rate modulus  are used 

as the characteristic scales. 

879 



Eliminating the derivatives with respect to the longitudinal coordinate using the continuity equation, we 

reduce modeling of the flow to solution of a system of ordinary differential  equations: 

1 vg)' --ff (yn - Ug = O" (10) 

Y 

1 yn 
- -  (1 + ~) U + MVgU'g - MU~g 1 dp 

n - -  2 + M B  v (Ug - Up) ; 
y Re m /)gU m dx  

(11) 

i 
n 

Y 1 +Vr, 
m 

+ MVgT'g = M B  0 p--p- cp (Tg - Tp) ;  
pg Cp 

(12) 

yn Re m +~kk K' 

, ? .  , 2  

+ MVgK - MUgK = E +  S k -  Ug Item 
(13) 

In( • Y-Y-- 1 
n 

Y Rem 
+ MVgE'  - 3MUgE = c e 2 -  

E 2 ~ E 2 
+ S t - eel - - - -  g'g ; 

K Re m K 

(14) 

1 yn  ' ~ (  v p ) - V p = O ;  
Y 

(15) 

M V p U ' p -  MU~ = 
t l  

Y 
Y ~fvv U - M B  v(Ug - Up); (16) 

Re m 

y Re m 

+ 

Here ~ = v t / v ,  B v - B o  = 1/Stk.  T h e  solution depends on the parameter  M = l /um and the Reynolds  number Rew 

= Vmrw/V. The  Reynolds  n u m b e r  Rein is constructed from the velocity at the channel axis Um and is determined as 

Rein --- R e w / M  in terms of the injection parameters.  The dimensionless pressure gradient  in Eq. (11) is found by 

targeting constancy of the flow ra te  lhrough the channel cross section. 

In new coordinates,  the boundary  conditions acquire the form: 

for y = O  Vg= U = T = K = i f = O ;  

for y =  1 U g = U p = O ,  V g = r g = T p =  1 ,  Vp=~o,  K = E = O .  
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Fig. 2. Comparison of the calculated distributions of the components  of the 

velocity vector (curves) with the data of a physical exper iment  l1 I (points) 

for  Rew = 105. 

To simplify the representa t ion of Eqs. ( I0)-(18) ,  we assume that pp -- const. This assumption, is consistent  

with the fact that solution of a system of equations in partial derivatives can be reduced to solution of a sys tem of 

ordinary differential  equat ions  [9 ] and is allowed for comparatively simply within the framework of the approach 

developed. 

It is assumed in construct ing system of Eqs. (10)-(18) that the characterist ics of the flow are functions of 

only one independent  variable y. However, as the obtained equations show, thei r  solution also depends implicitly 

on the variable x in te rms of the parameter  M. The latter is present only when the terms associated with turbulent  

viscosity are allowed for  in the initial system of equations. For example,  for laminar flow with particles, the 

parameter  M is not involved in the system of equations obtained. 

Numerical  calculations performed for different parameters M showed that  the dependence of the solution 

on it is ra ther  weak. T h e  terms that describe dissipative processes are much smaller  in magnitude than the  terms 

that model the genera t ion  of turbulence and convective transfer. Disregarding the indicated terms in the equa t ions  

of the k - e  model, we have a system of equations independent  of M. In [5 ], a model is constructed in which use 

is made of complete equat ions of the k - e  turbulence model, so i! is possible to compare the results obtained with 

different  approaches .  Sa t i s fac tory  agreement  of the results is an a rgument  that confirms the validity of the  

postulated form of solution. 

5. Results of  Numer ica l  Modeling. System of Eqs. (10)-(18) was integrated numerically for different  

parameters M. The  double-point  boundary problem was solved based on scalar and vector runnings with the use 

of coefficient-matrix factorizat ion and iterational coordination by nonlinearit ies and units of equations. To improve 

convergence, we used the method of lower relaxation. The  pressure gradient  was determined from the f low-rate 

relations. 
Numerical  resul ts  and  experimental  data on the velocity distribution in an infinite plane slot are compared 

in Fig. 2. As the inject ion intensi ty increases the influence of viscous effects on the structure of turbulent  flow 

becomes weaker and  manifes ts  itself mainly in the axial region, leading to an insignificant filling of the velocity 

profile. In the infinite p lane slot, the profile of the longitudinal component of the velocity vector becomes more  

extended and tends to a cosine distribution with strong injection as the Reynolds  number  increases (Rew --" oo). In 

axisymmetric flow, the distr ibution of the longitudinal velocity component  becomes less filled as the injection 

intensity increases. For  small Reynolds numbers,  the profile of the longitudinal velocity component is described by  

the parabolic distr ibution that  occurs in Poiseuille flow (Rew --" 0). 

The  profiles of the transverse component of the velocity vector of the condensed phase differ comparatively 

slightly in a wide range  of parameters .  The effect of the initial nonequilibrium of the flow when the particle velocity 

on the wall differs f rom the injection rate leads to a deformed profile of the transverse component of the particle 

velocity near  the mass-supply  surface. 
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Fig. 3. Distr ibutions of the kinetic turbulence energy  in a channel with in tense  

injection. The  curves show the results of numerical  modeling for M = 0.020 

(a); 0.016 (b); 0.012 (c). The  points show the data  of 14, 5]. 2 '!/ 10 / 
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Fig. 4. Distributions of the kinetic turbulence energy  in a channel with in tense  

injection for M = 0.036 (the mass  concentration of the impurity is 0.18):  1) 

flow in the absence of particles; 2) dp = 5/~m; 3) 10; 4) 15. 

A character is t ic  of flow in a channel  with a distributed mass  supply is the p resence  of a negative pressure  

gradient  due to accelerat ion of the flow because of the injection, which has a substant ia l  effect on the mechan i sm 

and in tens i ty  of turbulent  transfer.  The  distr ibutions of pulsation characteristics of tu rbu lence  in a channel  with 

permeable  walls, as Fig. 3 shows, are  in ra ther  good agreement  with the results of expe r imen ta l  measu remen t s  

except for  the region nea r  the permeable  wall. There  is a good agreement  as far as the m a x i m u m  kinetic energy of 

turbulence in the cross section is concerned.  

As the longitudinal  coordinate increases the maximum of the kinetic turbulence ene rgy  shifts f rom the wall 

into the flow. A layer  with vanishingly small values of turbulence energy  is located nea r  the  permeable  surface. A 

sharp increase  in the level of turbulent  velocity pulsations is observed in the region of a s t rong shift at a dis tance 

from the wall of the channel ,  where liquid particles moving along the normal  to the surface  a re  forced to turn a round  

in a nar row surface zone. The  dissipative function and hence the turbulent  viscosity have  similar characters  of 

variation. T h e  dependence  of the distr ibutions of the pulsation characterist ics of turbulence  on the Reynolds  n u mb er  

is r a the r  weak. 

T h e  p re sence  of a discrete componen t  has  a laminariz ing action on the flow. Profi les  of the  kinetic 

turbulence energy  in two-phase  flow are  shown in Fig. 4. 

T h e  inverse effect of an impuri ty  on the turbulence field is de termined by the ra t ios  of the t ime micro- and  

macroscales  of tu rbulence  in different regions of the flow to the relaxat ion time of a part icle.  The  presence  of two 

scales in the  equat ions  of the k - e  turbulence  model  leads to a different  cha rac t e r  of  action of the  discrete  

component ,  d e p e n d i n g  on the inert ia  p a r a m e t e r  of the impurity.  The  turbulizing ac t ion  of very fine particle 

(dp N 1 /~m) tha t  moves  practically in equilibrium with the gas is due to a descrease in the  viscous dissipation in 

the equation for the var iable  k. This  is connected with the fact that  fine particles, wi thout  interact ing with energy-  

intensive pulsat ions of the gas, induce the suppression of the high-frequency part of the  spec t rum responsible  for 
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the dissipation of turbulent energy. A decrease in the kinetic turbulence energy after the introduction of particles 
with diameter d o > 5 ~tm into the flow is explained by additional dissipation as a result of the interphase averaged 

and pulsation slip. 
Conclusion. Comparison of the results of numerical modeling with experimental data shows that the 

approach developed, on the one hand, reproduces the pattern of flow quite well and allows for its basic features 

and, on the other, allows for a comparatively simple software realization with a reasonable combination of accuracy 

of the results produced and the computing time. 
The method constructed for calculating flows in channels with permeable walls makes it possible to establish 

the extent  to which the formation of the flow structure is affected by individual factors, and to make 
recommendations that facilitate the solution of the basic system of equations. The approach developed can be 

considered as a stage of transition to two- and three-dimensional models in the process of creating computational 

aids for refined modeling of flows in channels with injection. 

N O T A T I O N  

x and y, Cartesian coordinates; u and v, components of the velocity vector; p, density; p, pressure; 0, 

temperature; k and e, kinetic turbulence energy and its dissipation rate; Cp, specific heat of the gas at constant 

m heat capacity of dispersed-phase material; dp, particle diameter; rv and TO, pressure; v, kinematic viscosity; Cp, 
times of dynamic and thermal relaxations; rw, half-width of the channel; Vw, injection-rate modulus; n, index of 

geometry of flow; Pr, Prandtl number; Re, Reynolds number; Slk, Stokes number. Subscripts and superscripts: g, 

gas; p, particle; m, channel axis; t, characteristics of turbulence; w, permeable wall. 
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